Mitä matkapuheluidemme ajoitukset kertovat meistä

[This post is in Finnish in case you are wondering; the original English-language version can be found here. The rest of the posts in this blog are in English.]

Tämä postaus on tarkoitettu taustamateriaaliksi tiedetoimittajille, liittyen Akatemian tiedeaamiaiseen 27.4. Mutta sinun ei toki tarvitse olla toimittaja lukeaksesi eteenpäin!

Tutkimusryhmäni on tutkinut matkapuhelindataa yli vuosikymmenen ajan. Se, miksi tutkimustamme kutsutaan, on muuttunut tällä välin verkostoanalyysistä datatieteeksi ja laskennalliseksi ihmistieteeksi. Miksi tahansa sitä kutsutaankin, tutkimuksessamme tarkastellaan ihmisten käyttäytymistä laskennallisin keinoin, ja aineistot voivat sisältää jopa miljoonia henkilöitä!

Käytämme automaattisesti kerättyä, anonymisoitua, aikaleimattua dataa, joka on peräisin teleoperaattoreiden laskutusjärjestelmistä. Tämän lisäksi tutkimme dataa joka on kerätty vapaaehtoisilta koehenkilöiltä esimerkiksi älypuhelinapplikaatioilla. Matkapuhelintietojen (kuka soitti kenelle ja milloin) avulla voimme rekonstruoida sosiaalisten verkostojen kytköksiä ja tarkastella myös puheluiden aikasarjoja. Nämä aikasarjat ovat osoittautuneet erittäin mielenkiintoisiksi!

Tarkastellaan ensin hyvin lyhyitä aikaskaaloja, sekunneista minuutteihin. Jos katsomme yksittäisen henkilön puheluita, ja piirrämme aikajanalle viivan aina kun henkilö puhuu puhelimessa, saamme tällaisen kuvan:

burstex2

Tämä aikasarja on purskeinen – se on satunnainen mutta ei tasaisen satunnainen! Se sisältää hyvin lyhyillä aikavälillä tapahtuvien puheluiden purskeita (kymmenistä sekunneista pariin minuuttiin), ja pidempiä taukoja näiden purskeiden välillä. Ihmisten viestintä ja muukin toiminta on usein purskeista – eikä kukaan oikeastaan tiedä, miksi. Muuten, hermosolujen laukomisen aikasarjat näyttävät varsin samanlaisilta! Ehkä me kaikki olemme vain hermosoluja koko maailman kattavassa sosiaalisessa verkostossa… no, jätetään tämä tieteiskirjailijoille.

Mennäänpä kohti pidempiä ajanjaksoja, tunteja ja päiviä. Sieltä löydämme vuorokausirytmit, jotka ymmärretään huomattavasti paremmin. Meidän päivittäinen toimintamme seuraa päivän ja yön vaihtelua 24 tunnin jaksoissa. Poimitaanpa pari henkilöä datasta ja katsotaan, paljonko he soittavat puheluita kuhunkin kellonaikaan:

vuorokausi
Tästä nähdään että vaikka ihmiset yleensä nukkuvat yöllä ja valvovat päivällä, vuorokausirytmeissä on silti selkeitä eroja, mikä näkyy myös puheluiden määrässä. On aamuvirkkuja, jotka soittavat puheluita jo toisten nukkuessa, ja iltaihmisiä jotka soittelevat myöhään illalla (varmaankin toisille iltaihmisille). Me olemme kaikki erilaisia!

Vuorokausirytmeihin liittyy muutakin kuin puhelumäärien vaihtelu: esimerkiksi iltaisin puhelut kohdistuvat usein harvoille (ja läheisille) ystäville, ja päivällä ne ovat satunnaisempia.

Siirrytäänpä sitten kohti vielä pidempiä ajanjaksoja – kuukausia ja vuosia. Nyt yksittäisten puheluiden tarkoilla ajoituksilla ei ole enää väliä. Lasketaan siis koehenkilöllemme, montako soittoa hän tekee kullekin ystävistään (ja sukulaisistaan), ja katsotaan miten tämä kuvio muuttuu ajassa! Saadaan tämäntapainen kuvio:

signatuurit

Tämä jakauma kertoo mikä osuus henkilön puheluista suunnataan tämän eniten puheluita saavalle ystävälle, mikä toiseksi eniten, jne. Eli se vastaa kysymykseen kuinka suosittu suosituin ystävä on, ja kuinka tasa-arvoisesti me ystäviämme kohtelemme (yleensä varsin epätasa-arvoisesti, kolme suosituinta voi saada yli puolet puheluista!) Tämä heijastaa tapaa, jolla rakennamme sosiaalisen maailmamme: meillä on vain muutama hyvin läheinen ystävä ja paljon ystäviä jotka eivät kuulu tähän rajattuun sisäpiiriin. Suurin osa siteistämme on heikkoja, ja ne muutamat vahvat siteet ovat hyvin merkityksellisiä.

Tällaiset puheluiden jakaumat ovat hieman erilaisia kaikille, ja ne ovat osoittautuneet hyvin pysyviksi silloikin, kun verkostossa on suurta vaihtuvuutta. Jos tapanasi on keskittyä 1-2 läheiseen ystävään, tulet tekemään näin silloinkin, jos nämä ystävät korvautuvat joillakin muilla vaikkapa paikkakunnalta muuton takia. Vastaavasti jos jaat aikasi tasan ystäviesi kesken, teet varmaan näin jatkossakin.

Puhelujakaumilla sekä verkoston vaihtuvuudella on yhteys luonteenpiirteisiin; jos tämä kiinnostaa, kollegani Simone Centellegher on kirjoittanut blogipostauksen aihepiiristä äsken julkaistun artikkelimme pohjalta.

Onko tästä kaikesta tiedosta sitten muutakin hyötyä kuin että se on mielenkiintoista? Todennäköisesti. Käyttäjästä kerättyyn dataan perustuvat hyvinvointisovellukset ovat yksi mahdollisuus, kunhan niiden toiminta varmennetaan tieteellisesti. Tutkimusryhmälläni onkin käynnissä Helsingin yliopiston Psykiatrian osaston kanssa pilottihanke, jossa pyritään löytämään mielialapotilaiden hyvinvointia ennustavia tekijöitä sovellusten keräämästä datavirrasta.

Lopuksi vielä linkkejä alkuperäisiin tieteellisiin julkaisuihin:

  • Small But Slow World [Phys. Rev. E | arXiv] (2011)
  • Daily Rhythms in Mobile Telephone Communication [PLoS One] (2015)
  • Persistence of Social Signatures in Human Communication [PNAS | arXiv] (2014)
  • Personality Traits and Ego-Network Dynamics [PLoS One] (2017)
  • Effects of time window size and placement on the structure of an aggregated communication network [EPJ Data Science] (2012)
  • From Seconds to Months: the Multi-scale Dynamics of Mobile Telephone Calls [EPJB | arXiv] (2015)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s